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Abstract

In recent years, there has been a great interest in computer-aided diagnosis of Alzheimer’s Disease

(AD) and its prodromal stage, Mild Cognitive Impairment (MCI). Unlike the previous methods

that consider simple low-level features such as gray matter tissue volumes from MRI, mean signal

intensities from PET, in this paper, we propose a deep learning-based feature representation with a

stacked auto-encoder. We believe that there exist latent complicated patterns, e.g., non-linear

relations, inherent in the low-level features. Combining latent information with the original low-

level features helps build a robust model for AD/MCI classification with high diagnostic accuracy.

Using the ADNI dataset, we conducted experiments showing that the proposed method is 95.9%,

85.0%, and 75.8% accurate for AD, MCI, and MCI-converter diagnosis, respectively.

1 Introduction

Alzheimer’s Disease (AD), characterized by progressive impairment of cognitive and

memory functions, and its prodromal stage, Mild Cognitive Impairment (MCI), are the most

prevalent neurodegenerative brain diseases in the elderly subjects. A recent research by

Alzheimer’s Association reports that AD is the sixth-leading cause of death in the United

States, rising significantly every year in terms of the proportion of cause of death [1].

Researchers in many scientific fields have devoted their efforts to understand the underlying

mechanism that causes these diseases and to identify pathological biomarkers for diagnosis

or prognosis of AD/MCI by analyzing different types of imaging modalities, such as

Magnetic Resonance Imaging (MRI) [3], Positron Emission Tomography (PET) [11],

functional MRI (fMRI) [5], etc.

Recent research has shown that it’s beneficial to fuse complementary information from

different modalities in discriminating AD/MCI patients from Healthy normal Controls (HC)

[12]. For instance, Hinrichs et al. [6] and Zhang et al. [13], independently, utilized a kernel-

based machine learning technique to combine the complementary information from multi-

modal data. Furthermore, [13] proposed to select features by means of sparse representation,

which jointly learn the tasks of clinical label identification and clinical scores prediction.
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Although these researches presented the effectiveness of their methods in their own

experiments on multi-modal AD/MCI classification, the main limitation of the previous

work is that they considered only simple low-level features such as gray matter tissue

volumes from MRI, mean signal intensities from PET, and biological measures from

CerebroSpinal Fluid (CSF). In this paper, we assume that there exists hidden or latent high-

level information inherent in the original features, which can be helpful to build a more

robust model.

For the past decade, a deep architecture [2] has gained a great attention in various fields due

to its representational power. Motivated by the recent work [2, 8], we exploit deep learning

for a feature representation, and ultimately to enhance classification accuracy. Specifically, a

‘Stacked Auto-Encoder’ (SAE) is utilized to discover a latent representation from the

neuroimaging and biological low-level features. To our best knowledge, this is the first work

that considers deep learning for feature representation in brain disease diagnosis and

prognosis. Our experimental results on ADNI dataset proves the effectiveness of the

proposed method.

2 Materials and Preprocessing

In this work, we use the ADNI dataset publicly available on the web1. Specifically, we

consider the baseline MRI, PET, and CSF data acquired from 51 AD patients, 99 MCI

patients (43 MCI patients who progressed to AD, and 56 MCI patients who did not progress

to AD in 18 months), and 52 healthy normal controls. Along with the brain image data, two

types of clinical scores, Minimum Mental State Examination (MMSE) and Alzheimer’s

Disease Assessment Scale-Cognitive subscale (ADAS-Cog), are also provided for each

subject.

The MRI and PET images were preprocessed by applying the typical procedures of anterior

commissure-posterior commissure correction, skull-stripping, and cerebellum removal.We

segmented MRI images into gray matter, white matter, and CSF, and then parcellated them

into 93 Regions Of Interests (ROIs) based on Kabani et al.’s atlas [9]. The PET images were

spatially normalized by coregistering them to their respective MRI images. For each ROI,

we used the gray matter tissue volume from MRI and the mean intensity from PET as

features, which are most widely used in the field for AD/MCI diagnosis [3,6,13]. Therefore,

we have 93 features from a MRI image and the same dimensional features from a PET

image. In addition, we have 3 CSF biomarkers of Aβ42, t-tau, and p-tau.

3 Methods

Fig. 1 illustrates a schematic diagram of the proposed method. Given multimodal data along

with the class-label and clinical scores, we first extract features from MRI and PET as

explained in Section 2. We then discover a latent feature representation from the low-level

features in MRI, PET, and CSF, independently, by deep learning with SAE. A multi-task

learning on the augmented feature vectors, i.e., concatenation of the original low-level

features and the SAE-learned features, is applied to select features that jointly represent the

1Available at http://www.loni.ucla.edu/ADNI
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class label and the clinical scores. Finally, we fuse the selected multi-modal feature

information with a multi-kernel Support Vector Machine (SVM).

3.1 Stacked Auto-encoder

Auto-encoder is one type of artificial neural networks structurally defined by three layers:

input layer, hidden layer, and output layer. The aim of the auto-encoder is to learn a latent or

compressed representation of the input vector x. Let DH and DI denote, respectively, the

number of hidden and input units. Given an input vector x ∈ ℝ DI , an auto-encoder maps it

to a latent representation y through a deterministic mapping y = f(W1x + b1), parameterized

by the weight matrix W1 ∈ ℝ DH×DI and the bias vector b1 ∈ ℝ DH. The representation y ∈
ℝDH from the hidden layer is then mapped back to a vector z ∈ ℝDI , which approximately

reconstructs the input vector x by another deterministic mapping z =W2y+b2 ≈ x, whereW2

∈ ℝDI× DH and b2 ∈ ℝDI. In this study, we consider a logistic sigmoid function for f(a) = 1/

(1 + exp(−a)).

Recent studies in machine learning have shown that a deep or hierarchical architecture is

useful to find highly non-linear and complex patterns in data [2]. Motivated by the studies,

in this paper, we consider SAE, in which an autoencoder becomes a building block, for a

feature representation in neuroimaging or biological data. Thanks to its hierarchical nature in

structure, one of the most important characteristics of the SAE is to learn or discover

patterns such as non-linear relations among input values. Utilizing its representational

power, we find a latent representation of the original low-level features extracted from

neuroimaging or biological data. Note that in order to obtain highly non-linear relations, we

allow the hidden layers to have any number of units, even larger than the input dimension,

from which we can still find an interesting structure by imposing a sparsity constraint on the

hidden units, which is called a sparse auto-encoder [10]. Specifically, we penalize a large

average activation of a hidden unit over the training samples. This penalization drives many

of the hidden units’ activation to be zero, resulting in sparse connections between layers.

With regard to training a SAE hierarchical network, the conventional gradient-based

optimization starting from random initialization suffers from falling into a poor local

optimum. Recently, Hinton et al., introduced a greedy layer-wise unsupervised learning

algorithm and showed its success to learn a deep belief network [7]. The key concept in a

greedy layer-wise learning is to train one layer at a time. That is, we first train the 1st hidden

layer with the training data as input, and then train the 2nd hidden layer with the outputs

from the 1st hidden layer as input, and so on. That is, the representation of the l-th hidden

layer is used as input for the (l + 1)-th hidden layer. This greedy layer-wise learning is called

‘pre-training’ (Fig. 2(a)). It is worth noting that the pre-training is performed in an

unsupervised manner.

To improve diagnostic performance in AD/MCI identification, we further optimize the deep

network in a supervised manner. Accordingly, we stack another output layer on top of the

SAE. This top output layer is used to represent the class label of an input data. We set the

number of units in the output layer to be equal to the number of classes of interest. This

extended network can be considered as a traditional multi-layer neural network and, in this

paper, we call it SAE-classifier. Therefore, it is straightforward to optimize the deep
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network by back-propagation with gradient descent, having parameters, except for the last

classification network, initialized by the pre-trained ones. This supervised optimization step

is called ‘fine-tuning’ (Fig. 2(b)). From an optimization point of view, it is known that the

parameters obtained from the pre-training step helps the fine-tuning optimization to reduce

the risk of falling into a poor local optimum [7]. This makes the deep learning distinguished

from the conventional multi-layer neural network.

Besides the fine-tuning, we also utilize the top output layer to determine the optimal SAE

structure, for which the solution is combinatorial. In this paper, we apply a grid search and

choose a network structure that produces the best classification accuracy. Once we

determine the SAE structure, we consider the outputs from the last hidden layer as our latent

feature representation. By concatenating the SAE-learned feature representation with the

original low-level features, we construct an augmented feature vector that is then fed into the

multi-task learning as explained below.

3.2 Multi-task and Multi-kernel SVM Learning

Following Zhang and Shen’s work [13], we consider the multi-task learning for feature

selection. Let m ∈ {1, ··· ,M} denote a modality index, s ∈ {1, ···, S} denote a task index2,

 denote a target response vector, and F(m) ∈ ℝN×D denote a set of the augmented feature

vectors, where N and D are, respectively, the number of samples and the dimension of the

augmented feature vectors. In the multi-task learning, we focus on finding optimal weight

coefficients  to regress the target response vector with a combination of the features in

F(m) with a group sparsity constraint as follows:

(1)

where  and λ is a sparsity control parameter. In Eq. (1),

, where A(m)[d] denotes the d-th row of the matrix A(m). This

l2,1-norm imposes to select features that are jointly used to regress the target response vector

 across tasks3. We select features whose absolute weight coefficient is larger than

zero for SVM learning.

Given the feature-selected training samples  and the test sample of x̃(m)

from modalities m ∈ {1, ··· ,M}, the decision function of the multi-kernel SVM is defined as

follows:

(2)

2In our case, the tasks are to predict class-label, MMSE, and ADAS-Cog scores.

3In this work, .
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where ζi is the class-label of the i-th sample, αi and β are, respectively, a Lagrangian

multiplier and a bias,  is a kernel function of

the m-th modality, ϕ(m) is a kernel-induced mapping function, and βm ≥ 0 is a weight

coefficient of the m-th modality with the constraint of Σm βm = 1. Refer to [4, 13] for a

detailed explanation.

4 Experimental Results and Discussions

We consider three binary classification problems: AD vs. HC, MCI vs. HC, and MCI

Converter (MCI-C) vs. MCI Non-Converter (MCI-NC). In the experiment of the MCI vs.

HC classification, both MCI-C and MCI-NC data were used for the MCI class. For each

classification problem, we applied a 10-fold cross validation. Specifically, we randomly

partitioned the dataset into 10 subsets and then used 9 out of 10 subsets for training and the

remaining one for test. In order to determine the hyper-parameters of λ in Eq. (1) and β in

Eq. (2), another round of cross-validation was performed within the training data. We

repeated these whole process 10 times for unbiased evaluation. We used a linear kernel in

SVM.

In order to show the validity of the SAE-learned Feature representation (SAEF), we

compared the results of the proposed method with those from the original Low-Level

Features (LLF) using the same strategies of feature selection and classifier learning. We

should note that, for fair comparison, we used the same training and test data across the

experiments for all the competing methods.

With regard to the SAE structure, we considered three hidden layers for MRI, PET, and

CONCAT, and two hidden layers for CSF, which were determined based on our preliminary

experiments. Here, CONCAT represents the concatenation of the MRI, PET, and CSF

features into a single vector. As explained in Section 3.1, we determined the number of

hidden units based on the classification results with a SAE-classifier. The classification

accuracies and the optimal structure of the SAE-classifier are shown in Table 1. We used a

DeepLearnToolbox4 to train the SAE, and a SLEP toolbox5 for the multi-task learning,

respectively.

Table 2 presents the mean classification accuracies of the competing methods. The method

of multi-kernel SVM with LLF corresponds to Zhang and Shen’s method [13]. Although the

approach based on the augmented feature vector (LLF+SAEF) with a single-modality was

outperformed for some cases by the LLF-based one, the proposed method with a Multi-

Kernel SVM (MK-SVM) produced the best performances for AD vs. HC, MCI vs. HC, and

MCI-C vs. MCI-NC classification problems, with the accuracies of 95.9%, 85.0%, and

75.8%, respectively. It should be noted that the performance improvement by the proposed

method was 4.0% for MCI-C vs. MCI-NC classification, which is the most important for

early diagnosis and treatment.

4Available at ‘https://github.com/rasmusbergpalm/DeepLearnToolbox’
5Available at ‘http://www.public.asu.edu/~jye02/Software/SLEP/index.htm’
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In order to further validate the effectiveness of the proposed method, we also computed a

statistical significance of the results with paired t-test: AD vs. HC (0.0127), MCI vs. HC

(0.0568), and MCI-C vs. MCI-NC (0.0096). The test was performed with the results

obtained from Zhang and Shen’s method [13] (LLF with MK-SVM) and the proposed

method (LLF+SAEF with MK-SVM). The proposed method statistically outperformed

Zhang and Shen’s method, especially for AD vs. HC (0.0127) and MCI-C vs. MCI-NC

(0.0096).

We should mention that the data fusion in deep learning was considered through the

concatenation of the features from multiple modalities. But, it is limited as a shallow model

to discover the non-linear relations among modalities. We believe that although the

proposed SAE-based method is successful to find latent information, resulting in

performance enhancement, there is still a room to design a multi-modal deep network for the

shared representation among modailities. It is also an important issue how to efficiently

interpret or visualize the trained weights of the deep network in brain research.

5 Conclusion

We propose a deep learning-based feature representation for AD/MCI diagnosis. Unlike the

previous methods that consider only simple low-level features extracted directly from

neuroimages, the proposed method can successfully discover latent feature representation

such as non-linear correlations among features that improve diagnosis accuracy. Using the

ADNI dataset, we evaluated the performance of the proposed method and compared against

the state-of-the-art method [13]. The proposed method outperformed the competing method

and presented the accuracies of 95.9%, 85.0%, and 75.8% for AD, MCI, and MCI-C

diagnosis, respectively.
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Fig. 1.
An illustration of the proposed method for AD/MCI diagnosis
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Fig. 2.
A deep architecture of our stacked auto-encoder and the two-step parameter optimization

scheme
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